阿里云& NVIDIA TensorRT Hackathon 2023 决赛圆满收官
2023-10-18 17:54:14爱云资讯阅读量:745
2023年9月 29日,由阿里云、NVIDIA联合主办,阿里云天池平台承办的“NVIDIATensorRTHackathon 2023生成式AI模型优化赛”圆满落幕。该赛事自2020年以来,已成功举办三届,本届赛事于今年 7月启动,吸引了来自全国729支开发者团队报名参赛,其中共有 40支团队晋级复赛,最终 26支团队于决赛中脱颖而出,分获冠军/亚军/季军及优胜奖,展现出了卓越的技术实力。
解锁TensorRT-LLM挖掘生成式AI新需求
今年的NVIDIA TensorRT Hackathon着重提升选手开发 TensorRT应用的能力。
在过去的一年里,生成式 AI迎来了爆发式增长。计算机能够批量生成大量图像和文本,有的甚至能够媲美专业创作者的作品。这为未来生成式 AI模型的发展铺平了道路,令人充满期待。正因如此,NVIDIATensorRTHackathon 2023选择生成式AI模型作为比赛的主题,以激发选手的创新潜力。
今年的比赛设置了初赛和复赛两组赛题——初赛阶段,选手需要利用 TensorRT加速带有ControlNet的 Stable Diffusion pipeline,以优化后的运行时间和出图质量作为主要排名依据;复赛为开放赛题,选手可自由选择公开的 Transformer模型,并利用 TensorRT或 NVIDIA TensorRT-LLM进行模型推理优化。
NVIDIATensorRT™作为 GPU上的 AI推理加速库,一直以来都备受业界认可与青睐。本次比赛的背后是 NVIDIA TensorRT开发团队对产品不断进行改进和优化的结果。通过让更多模型能够顺利通过 ONNX自动解析得到加速,并对常见模型结构进行深度优化,极大地提高了 TensorRT的可用性和性能。这意味着大部分模型无需经过繁琐的手工优化,就能够在 TensorRT上有出色的性能表现。
TensorRT-LLM是 NVIDIA即将推出用于大语言模型推理的工具,目前已于官网开放试用。作为此次复赛推荐使用的开发工具之一,TensorRT-LLM包含 TensorRT深度学习编译器,并且带有经过优化的 CUDA kernel、前处理和后处理步骤,以及多 GPU/多节点通信,可以在 NVIDIA GPU上提供出类拔萃的性能。它通过一个开源的模块化 Python应用 API提高易用性和可扩展性,使开发人员能够尝试新的 LLM,提供最顶尖的性能和快速自定义功能,且不需要开发人员具备深厚的 C++或 CUDA知识。
作为本次大赛的主办方之一,阿里云天池平台为参赛选手提供了卓越的云上技术支持,在阿里云GPU云服务器中内置 NVIDIA A10 Tensor Core GPU,参赛者通过云上实例进行开发和训练优化模型,体验云开发时代的AI工程化魅力。同时,由NVIDIA 30名工程师组成导师团队,为晋级复赛的 40支队伍提供一对一辅导陪赛,助力选手获得佳绩。
从实践到迭代脑力与创造力的集中比拼
本次比赛中涌现出大量优秀的开发者。在获奖的 26支团队中,有不少团队选择借助 TensorRT-LLM对通义千问-7B进行模型推理优化。
通义千问-7B(Qwen-7B)是阿里云研发的通义千问大模型系列的 70亿参数规模的模型,基于 Transformer的大语言模型,在超大规模的预训练数据上进行训练得到。在 Qwen-7B的基础上,还使用对齐机制打造了基于大语言模型的 AI助手 Qwen-7B-Chat。
获得此次比赛一等奖的“无声优化者(着)”团队,选择使用 TensorRT-LLM完成对 Qwen-7B-Chat实现推理加速。在开发过程中,克服了 Hugging Face转 Tensor-LLM、首次运行报显存分配错误、模型 logits无法对齐等挑战与困难,最终在优化效果上,吞吐量最高提升了4.57倍,生成速度最高提升了5.56倍。
而获得此次赛事二等奖的“NaN-emm”团队,在复赛阶段,则选择使用 TensorRT-LLM实现 RPTQ量化。RPTQ是一种新颖的基于重排序的量化方法,同时量化了权重与中间结果(W8A8),加速了计算。从最开始不熟悉任何 LLM模型,到后续逐步学习和了解相关技术,“NaN-emm”团队启用了GEMM plugin,GPT Attention plugin,完成了 VIT、Q-Former、Vicuna-7B模型的转化,最终通过 40个测试数据,基于Torch框架推理耗时 145秒,而经过TensorRT-LLM优化的推理引擎耗时为 115秒。
本次大赛还涌现了一批优秀的开发者,本届参赛选手邓顺子不仅率领队伍获得了一等奖,还收获了本次比赛唯一的特别贡献奖。他表示,2022年的 Hackathon比赛是他首次接触 TensorRT,这使他对模型推理加速产生了浓厚的兴趣。尽管当时未能进入复赛,但那次经历让他深感自身技能的不足。在上一次比赛中,他目睹了顶尖选手使用 FasterTransformer在比赛中取得领先地位,这一经历让他对 AI技术有了更深入的理解和追求。随后,他积极做 TensorRT上的模型开发,特别是对 ChatGLM/Bloom等新兴模型进行了优化,感受到了 TensorRT的强大。
今年,他再次参加了 TensorRT Hackathon 2023,利用 TensorRT-LLM成功优化了 QWen大模型,实现了自己的梦想。他感谢主办方给予的机会,团队的支持,以及所有参赛者的努力,他期待未来能与大家一起为 AI技术的发展创造更多奇迹。
人工智能应用场景创新日新月异,AI模型的开发与部署也需要注入新的动能。在此次赛事中,选手们基于 TensorRT挖掘出更多的潜能和功能需求。未来,阿里云和NVIDIA还将持续为开发者和技术爱好者提供展示技能和创意的平台,天池平台将与更多优秀的开发者一同推进 TensorRT的发展,让 AI在 GPU上更容易、更高效地部署。
相关文章
- 阿里云助力童语故事跑出增长“加速度”——加速开拓C端与B端场景
- 阿里云磐久AI Infra 2.0在OCP峰会上展现AI互连技术新突破
- 阿里云×端木软件携无影云电脑精彩亮相天津市“一起益企”中小企业服务大会
- AI安全新突破!阿里云实现Confidential AI全栈覆盖
- Elastic亮相云栖大会,在阿里云上隆重发布企业版
- 阿里云旗舰级合作伙伴端木软件亮相2024云栖大会
- 2024云栖大会:阿里云通信发布大模型语音机器人,响应时间仅500毫秒
- 奇墨ITQM亮相2024云栖大会,荣获阿里云产品生态伙伴成长进步奖
- 共创云上数字基建,智加科技与阿里云开启全面合作
- 阿里云服务器操作系统Alibaba Cloud Linux全新升级,核心场景性能提升超20%
- “JetBrains与阿里云战略合作发布JetBrains Al Assistant”
- 强强联合!亚信科技、阿里云携联盟之力,助力行业“零门槛”玩转大模型
- IDC最新报告:阿里云连续四年领跑中国公有云大数据平台市场
- 阿里云×端木软件助力温州市企业云化转型研讨会暨温州市十朵云系列活动圆满举行
- 阿里云、字节、浪潮信息、英特尔、电标院: OpenBMC是服务器固件大势所趋
- 海亮科技集团与阿里云达成合作 共建“教育科技数据库创新应用中心”