深海海底地质灾害和人工智能识别研究取得新进展

2020-11-11 13:39:15爱云资讯阅读量:962

近日,深海地球物理与资源研究室王大伟研究员团队在地学TOP期刊《Geomorphology》报道了深海海底微地貌(水平面元12.5-25米、垂向分辨率6.5米的三维人工地震数据)的最新研究成果。该团队通过与中国石油大学(华东)合作,建立了海底地貌边界识别的人工智能算法,并通过与能源企业合作,将深海海底灾害识别与预测方法应用于生产实际。

(一) 尽管前人通过水槽实验和露头测量已经建立了浊流底形的理论演化模型,但是,水道-朵叶体转换带(the channel–lobe transition zones,简称CLTZ)内的浊流底形演化很少有文献记载,对其了解也非常少。以南海琼东南盆地高分辨率三维人工地震资料为基础,采用地震沉积学与海底地貌学结合的分析方法,刻画了水深1080-1260米、40公里长的现代海底浊流水系;推进了微地貌尺度的深水浊流底形观测;在CLTZs内,更新了弗洛德数(Fr)整体下降趋势下,局部超临界流动和水力跃变的演化模型。

华光水道-朵叶体转换带

此项研究在线发表于《Geomorphology》(Wang, W., Wang, D.*, Sun, J., Shao, D., Lu, Y., Chen, Y., Wu, S., 2020. Evolution of deepwater turbidite bedforms in the Huaguang channel–lobe transition zone revealed by 3D seismic data in the Qiongdongnan Basin, South China Sea. Geomorphology, 370: 107412. DOI:10.1016/j.geomorph.2020.107412)

(二) 从沉积环境、底形形态、沉积结构、形成机理和数值模拟等方面介绍了周期阶坎(Cyclic steps)的研究进展,探讨了不同探测方法的分辨率问题,给出了周期阶坎研究的突破方向。在水深大于500米的区域,将自主式水下航行器(AUV)和船测多波束、AUV和船测浅地层剖面、人工地震数据结合,并通过载人潜水器(HOV)获取原位数据,完善周期阶坎的三维精细结构。

对比不同探测设备之间的差异性

此项研究发表于《地球科学进展》(王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战. 地球科学进展, 2020,35(9):890-901. DOI:10.11867/j.issn.1001-8166.2020.072)

(三) 随着深拖、AUV、ROV、HOV等技术在工程调查中的广泛应用,学术与工业界已获得了近海底的、大数据量的、高精度的海底地形数据。海洋科学的精细研究、海洋工程的施工效率,要求高效、准确的海底地貌分析结果,对传统的地貌分析方法提出了新要求。利用人工智能的方法,对海底地形数据进行分析与处理,自动识别海底地貌单元的边界,可以大大提高海底地貌分析的工作效率和准确度。

相关文章

人工智能技术

更多>>

人工智能公司

更多>>

人工智能硬件

更多>>

人工智能产业

更多>>
关于我们|联系我们|免责声明|会展频道

冀ICP备2022007386号-1 冀公网安备 13108202000871号

爱云资讯 Copyright©2018-2024