不需要人类知识,AI 也能以更少步数复原任意 3 阶魔方
2018-06-20 09:34:04爱云资讯613
但是事实上对于算法来说,要解出魔术方块的谜题和下棋是完全不同种类的任务。
过去在棋类游戏中展现出超人类表现的算法,都是属于传统的「强化学习」(RL)系统,这类型 AI 在确定某些特定的一步是实现整体目标的积极步骤时,便会获得奖励,进而使系统产生追求最大利益的习惯性行为,然而当 AI 无法确定这一步是否有益时,强化学习自然就无法发挥作用。
如果还是无法理解,试着这么想吧:在进行棋类游戏时,系统可以轻易去判定一个动作究竟是属于「好棋」或「坏棋」,但是在转动魔术方块时,你能够说出有任何特定的一步,是改善整体难题的关键吗?
从外观上来看,魔术方块是个很单纯的益智玩具,然而因为 3D 立体的特性,这让一般常见的 3 阶魔术方块就已有着惊人的近 4.33×1019 组合,而在其中,只有六面都是相同颜色的状态才能成为「正确解答」。
过去人们已经研究出许多不同算法和策略来解决这项难题,但 AI 研究人员真正的目标还是希望能像 AlphaGo Zero 那样,让 AI 在没有任何历史知识的情况下,学会自行应对随机的魔术方块难题。
而近期加利福尼亚大学 Stephen McAleer 和团队透过一种被称为「自学叠代」(autodidactic iteration)的 AI 技术打造出「DeepCube」系统,成功让 AI 在面对任何乱序的 3 阶魔术方块时都可以成功找出正确解答。
根据团队解释,自学叠代是一种全新的强化学习算法,与过去棋类游戏算法的处理方式不同,它采取了「反着看」的内部奖励判断机制:当 AI 提出一个动作建议时,算法便会跳至完成的图形开始往前推导,直到到达提出的动作建议,藉以判断每一步动作的强度。
虽然听来相当的繁杂,但这让系统能够更熟悉每一步动作,并得以评估出整体强度,一但获得足够数量的数据,系统便能以传统的树状搜索方式去找出如何移动最好的方法。
▲ DeepCube 自行找出的一种策略 aba-1,许多玩家也经常使用。(Source:arXiv via Stephen McAleer)
团队在研究中发现,DeepCube 系统在训练中自己找出了许多与人类玩家相同的策略,并在经过 44 个小时的自学训练后,已经能够在没有任何人为干预下,在平均 30 步以内复原任何随机乱序魔术方块──这些「最佳解答」不是和人类最佳表现一样好,就是比这些表现更好。
McAleer 和团队打算未来将在更大、更难解决的 16 阶魔术方块上进行测试,这项全新的系统将有助于 AI 应用更全面化,像是生物物理学上重要的蛋白质摺叠(Protein Folding)问题或也有望得以解决。
相关文章
- AR智能眼镜催化万亿市场,Meta/微美全息驱动“AR+AI”产业生态爆发式增长
- 华硕无畏家族跨界联动《凸变英雄X》:有信赖,更热AI
- 全流程AI赋能,重庆首个美的灯塔工厂照亮中国水机前行之路
- 燃梦绿茵,智联未来,大连移动携手华为打造5G-A×AI数字球场
- 白皮书发布会:空调行业新标准 海信AI技术让空调能耗下降41%
- 从防伪溯源到智能协同,动码印章借AI之力重塑酒业生态
- 拒绝机械化互动!云知声兽牙AI Agent功能上新,开启智能协作新时代
- 腾讯云AI存储解决方案持续升级,为AI全业务场景提供全面支持
- 星汉大模型2.0:AI大模型浪潮奔涌 大华股份呈交“智能答卷”
- Flat Ads:透视中国AI出海战略,看豆包、腾讯元宝、美图相机如何占领市场先机
- 动码印章搭载AI引擎,筑牢教育行业数字化转型安全基石
- 2025电动汽车百人会:神州数码AI破局,构建车企AI增长点
- 云轴科技ZStack CTO王为@中国GenAI大会:AI原生实践重构AI Infra新范式
- AI+教育,浩鲸科技参加2025高校人工智能大模型建设发展论坛
- 摩尔线程与松应科技达成战略合作,国产GPU+物理AI仿真打造具身智能开发“新底座”
- 广和通与实丰文化达成战略合作,共建AI产品联合实验室