Google的AI使用更少的计算和数据来训练最先进的语言模型
2020-04-07 15:09:47爱云资讯659
在最近的一项研究中,Google的研究人员提出了“有效学习一种对令牌替换进行准确分类的编码器”(ELECTRA),这是一种AI语言训练技术,在具有相同数量的计算资源的情况下,其性能优于现有方法。在发布数月后的这一周,合著者发布了TensorFlow的代码库(和预训练的模型),为强大的模型奠定了基础,这些模型能够以最先进的精度执行语言任务。这些模型可能有一天会进入客户服务聊天机器人,或者可能被合并到为执行团队总结报告的工具中。
预训练方法通常分为两类:语言模型(例如OpenAI的GPT),该模型从左到右处理输入文本并根据给定的上下文预测下一个单词;以及屏蔽语言模型(例如Google的BERT和ALBERT以及Facebook的语言模型)RoBERTa),它可以预测输入中被掩盖的少量单词的身份。屏蔽语言模型的优势在于,它们可以“看到”要预测的令牌(即单词)左右两侧的文本,但是它们的预测仅限于输入令牌的一小部分,从而减少了学习量从每个句子。
ELECTRA的秘密秘诀是一项称为替换令牌检测的预训练任务,它可以在从所有输入位置学习的同时训练双向模型(就像被屏蔽的语言模型一样),就像语言模型一样。该区分模型的任务是区分“真实”和“伪造”输入数据。ELECTRA通过将一些令牌替换为不正确的伪造伪造来“破坏”输入,但在某种程度上看来是伪造的,然后需要模型来确定哪些令牌已被替换或保持不变。
替换令牌来自另一个称为生成器的AI模型。生成器可以是在令牌上产生输出分布的任何模型,但是Google研究人员使用了与鉴别器一起训练的小型屏蔽语言模型。生成器和鉴别器共享相同的输入词嵌入。在预训练阶段之后,将生成器放下,并在各种下游任务上微调鉴别器(ELECTRA模型)。
相关文章
- Google发布AI领域新进展:涉及抗灾、生成式AI和语言模型
- Google Pixel Fold显示屏规格曝光
- Aqara绿米亮相Google I/O大会,支持Matter协议助力智能家居互通互联
- Google发布搭载Tensor处理器的Pixel 6a 售价449美元
- Google正在使用人工智能“更准确地检测更广泛的个人危机搜索”
- 飞书深诺荣膺三项Google 2021年优秀合作伙伴大奖,在出海营销机构中独占鳌头
- 神州数码旗下GoPomelo荣获Google Cloud年度合作伙伴大奖
- Google推出第四代定制AI芯片TPU v4
- Google AI再曝黑人女员工离职,这是所有科技公司都将面对的问题
- Google实验允许“听到颜色的声音”
- 谷歌开发的双击手势操作 可触发Google Assistant
- VR/AR大战或一触即发,苹果/Google/微美全息等布局5G商用的竞速赛
- 取代Android TV!谷歌或在3月推出全新的Google TV
- 诺基亚与Google签约以构建基于云的5G网络
- Google和苹果,为什么都想让你安装新系统
- Google最新的AR化妆功能曝光,微美全息AR+AI人脸识别精确解锁