上海高研院在5G人工智能感知领域取得新进展
2020-03-17 16:01:51爱云资讯1623
当前,我国社会已步入5G时代。移动设备数量与无线业务的剧增,与有限频谱资源之间的矛盾正成为制约信息智能化社会进一步发展的重要难题。可以预见,频谱资源的增长速度将远小于需求增长的速度,因此,智能化、高精度、高可靠的频谱感知技术是5G通信系统运行的重要基石。如何实现高质量的频谱资源感知与管理则是维护5G通信系统高效率运行,促进下一代移动通信发展的关键所在。
针对上述挑战,上海高研院智能信息通信技术研究与发展中心团队针对5G通信的主流发展趋势,并根据场景用户特点与应用需求的耦合性,深入分析并归类出5G生态体系中涉及频谱感知应用的三大典型应用场景。基于不同场景下优化目标的差异性,研究团队创造性地提出了一种具备弹性能力的频谱感知系统架构,该架构由人工智能增强学习算法进行驱动,利用接收端多天线之间的独立性与分集差异特性,尊重系统要求与实际环境参数,通过动态学习实现最优的感知策略。该技术可根据不同用户的不同优化目标需求,自适应改变参数,在较小计算开销的基础上获取最佳的性能体验。经实验数据验证,所提技术可有效适用于5G生态体系中的各类典型应用场景,且比现有技术具备更高的性能表现。上述研究可有效支持中科院自主研发的SEANET技术体系,促进中科院-上海科技大学联合校园试验网Alpha版的建设实施,为我国5G的进一步部署与推广以及下一代通信系统的应用发展提供了理论依据与技术支撑。
本研究由上海高研院团队独立完成。其中,副研究员徐天衡为该论文的第一作者,研究员胡宏林为该论文的通信作者。上述研究工作获得国家自然科学基金、中科院C类战略性先导科技专项、中科院青年创新促进会、上海市青年拔尖人才计划、上海市启明星计划以及上海市扬帆计划的资助。
图1. 5G生态体系中涉及智能感知的几个典型应用场景,分别为:(a)常规5G通信场景;(b)工业4.0及智能物联网场景;(c)异构网络混合共存场景
图2.基于增强学习算法的智能弹性感知技术系统架构
图3.智能弹性感知技术在不同优化模式下的性能对比。上:感知精度性能;下:算法能耗性能
相关文章
- 人工智能搜索引擎Perplexity的AI语音助手已登陆iOS平台
- 学而思素养携手中国青少年宫协会 开启人工智能科普公益行
- 中国软件行业协会NCT编程考级2025年4月考圆满收官,新增人工智能教育测评体系
- 更能算、更省钱、更懂化工的国产人工智能来了!
- 2025“人工智能+”产业发展大会:开启智能产业新时代
- 云南联通科技创新暨人工智能合作发展大会在昆启幕:科技赋能边疆,智启数字云南新篇章
- 人民出行受邀见证中国-东盟人工智能创新合作中心签约 共启广西智能产业新篇章
- AI赋能,数智创新,慧博云通闪耀2025日本人工智能展览会
- 维基百科将发布专用于训练人工智能模型的数据集,以抵御网络爬虫抓取
- 培生发布智能课程生成器:创新人工智能驱动教师备课方式变革
- OpenAI发布全新人工智能模型o3和o4-mini,首次实现图像思考
- 深度迈进人工智能新纪元,标普云正式更名标普智元
- Meta AI宣布即将使用欧盟用户数据训练人工智能模型
- 英伟达宣布在台积电亚利桑那州工厂投产Blackwell人工智能芯片
- 九章云极DataCanvas入选2025全国企业“人工智能+”行动创新案例TOP100
- 云知声受邀参加2025中国数字经济产业发展大会,携手多方共筑苏州人工智能战略生态