谷歌提出新型自动语音识别数据增强大法,直接对频谱图“动刀”,提升模型表现
2019-04-28 16:24:27爱云资讯1013
每次用语音输入完成“打字”过程,你的手机就经历了一次自动语音识别(ASR)。

这种已经无处不在的音频转录成文本的技术,在缺乏足够大的数据集,模型过拟合严重。因此当前如何去扩增音频数据是个大问题。
谷歌大脑在最新的一篇博客中,提出了一种用于ASR中扩增数据的新方法:SpecAugment。
和之前的研究画风有些不同,这一次,谷歌将这个问题当成了视觉问题而非音频问题。SpecAugment没有像传统扩增方法一样增加音频波形,而是将扩增策略直接应用于音频频谱图。
谷歌表示,SpecAugment方法简单,计算成本低,并且不再需要其他额外数据,在ASR任务LibriSpeech 960h和Switchboard 300h上,这种扩增方法效果惊艳。
不信接着看。
音频波形图
在传统的ASR任务中,在将训练数据输入到神经网络前,通常先通过剪裁、旋转、调音、加噪等方式先对输入的音频数据进行增强,然后再转换成频谱图等视觉表示。因此,每次迭代后,都有新的频谱图生成。
在谷歌的新方法中,研究人员将研究重点放在了扩增频谱图本身的方法上,并不针对声音数据进行改造,而是直接对频谱图等视觉表示进行增强。
因为扩增可以直接被应用于神经网络的输入功能上,因此可以在训练过程中在线运行,不会影响到训练速度。

将声音数据转换成梅尔频率倒谱图,也就是基于声音频率的非线性梅尔刻度的对数能量频谱的线性变换
SpecAugment通过时间方向上的扭曲改造频谱图,及时修改、屏蔽连续频率频道块和语言频道块。这种扩增方式能让神经网络更强健,帮助抵抗时间方向上的变形,也会防止频率信息和语音片段信息丢失。
下图就是这种扩增策略的示例图:

图中紫色区域为被屏蔽的部分可以看出,通过在时间方向上进行扭曲,外加屏蔽多个连续时间步长(垂直方向屏蔽)和梅尔频率频道(水平方向屏蔽),能有效扩增数据频谱图。
词错率降5%
这种方法的效果如何?研究人员在实验基础上进行了一系列实验。
研究人员限用大型开源语音识别数据集LibriSpeech上进行实验,比对模型生成的文字与目标文字的差异。他们选取了端对端谷歌语音识别神经网络框架Listen, Attend and Spell(LAS),比较了使用SpecAugment扩增数据与不使用情况下训练出网络的性能。
在此实验中采用控制变量法,所有超参数都保持不变,只改变输入到网络的数据,用转录过程的词错率( Word Error Rate,WER)来衡量结果。
结果发现,在LibriSpeech数据集上,SpecAugment扩增方法能明显降低词错率。模型大小的不同对结果影响不大,平均词错率大致降低5%。
扩增数据后的词错率(蓝色)与无扩增数据的词错率(黄色)除了降低词错率,SpecAugment还能有效防止神经网络过拟合。
对训练数据、清洁数据和嘈杂数据的扩增结果研究人员增加了网络容量,在LibriSpeech 960h和Switchboard 300h任务上检测模型词错率,发现用SpecAugment扩增数据过后可获得当前最优结果。

相关文章
- 苹果全力研发增强现实AR眼镜,谷歌/微美全息夯实领先优势开启空间交互时代!
- OpenAI拟从谷歌收购Chrome
- 谷歌最新发布Agent2Agent 协议 (A2A)
- 谷歌地图推出新工具,助力城市分析基础设施与交通状况
- 亚马逊首款量子计算芯片Ocelot亮相,微软/谷歌/微美全息竞逐加速量子行业成熟
- 阿里开源模型万相2.1引爆视频赛道!谷歌/微美全息加入全模态AI开源新时代!
- 谷歌公布2025年I/O开发者大会日期,定档5月20日
- 三星与谷歌联手开发AR眼镜,Meta/微美全息硬件先行共绘XR未来蓝图
- 谷歌量子芯片重磅登场掀热潮,微美全息持续打造量子“芯”质生产力
- Meta携手卡梅隆共铸3D沉浸世界,谷歌/微美全息创新引领全息虚拟新纪元
- 抢先OpenAI Sora谷歌新推Veo模型,亚马逊/微美全息加入AI视频生成竞赛引关注
- 谷歌DeepMind发布Gemini 2.0人工智能模型
- 2025年AI Agent商用蓄势待发,微软/谷歌/微美全息纷纷入局重塑AI全产业链
- 谷歌发布突破性量子计算芯片Willow:五分钟完成超算10的25次方年的计算
- 预报天气更快、更准确!谷歌发布AI天气预测模型GenCast
- 谷歌文生视频模型Veo私人预览版在Vertex AI平台上线